A quantity that is fully described by a single number is called a **scalar quantity** (i.e., mass, temperature, volume).

A quantity having both a magnitude and a direction is called a **vector quantity**.

The geometric representation of a vector is an arrow with the tail of the arrow placed at the point where the measurement is made.

We label vectors by drawing a small arrow over the letter that represents the vector, i.e.,: \vec{a} for position, \vec{v} for velocity, \vec{a} for acceleration.

- Vector addition is easily extended to more than two vectors.
- The figure shows the path of a hiker moving from initial position 0 to position 1, then 2, 3, and finally arriving at position 4.
- The four segments are described by displacement vectors \vec{D}_1, \vec{D}_2, \vec{D}_3, and \vec{D}_4.
- The hiker’s net displacement, an arrow from position 0 to 4, is $\vec{D}_{net} = \vec{D}_1 + \vec{D}_2 + \vec{D}_3 + \vec{D}_4$.
- The vector sum is found by using the tip-to-tail method three times in succession.
Coordinate Systems and Vector Components

- A coordinate system is an artificially imposed grid that you place on a problem.
- You are free to choose:
 - Where to place the origin, and
 - How to orient the axes.
- Below is a conventional xy-coordinate system and the four quadrants I through IV.

Vector Components

⇒ Components of a vector are two perpendicular vectors that add together to produce the original vector.

Vector Components

⇒ A component of a vector is really just a projection of the vector onto an axis.

⇒ Any vector can be expressed as the sum of its components.
Component Vectors

- The figure shows a vector \vec{A} and an xy-coordinate system that we’ve chosen.
- We can define two new vectors parallel to the axes that we call the component vectors of \vec{A}, such that $\vec{A} = \vec{A}_x + \vec{A}_y$.
- We have broken \vec{A} into two perpendicular vectors that are parallel to the coordinate axes.
- This is called the decomposition of \vec{A} into its component vectors.

Components

- Suppose a vector \vec{A} has been decomposed into component vectors \vec{A}_x and \vec{A}_y, parallel to the coordinate axes.
- We can describe each component vector with a single number called the component.
- The component tells us how big the component vector is, and, with its sign, which ends of the axis the component vector points toward.
- Shown to the right are two examples of determining the components of a vector.

Tactics: Determining the Components of a Vector

TACTICS BOX 3.1

Determining the components of a vector

- The absolute value $|A_x|$ of the x-component A_x is the magnitude of the component vector A_x.
- The sign of A_x is positive if A_x points in the positive x-direction (right), negative if A_x points in the negative x-direction (left).
- The y-component A_y is determined similarly.

Moving Between the Geometric Representation and the Component Representation

- We will frequently need to decompose a vector into its components.
- We will also need to “reassemble” a vector from its components.
- The figure to the right shows how to move back and forth between the geometric and component representations of a vector.

The magnitude and direction of \vec{A} are found from the components. In this example, $A = \sqrt{A_x^2 + A_y^2}$, $\theta = \tan^{-1}(A_y/A_x)$.

The components of \vec{A} are found from the magnitude and direction.
Moving Between the Geometric Representation and the Component Representation

- If a component vector points left (or down), you must manually insert a minus sign in front of the component, as done for B_y in the figure to the right.
- The role of sines and cosines can be reversed, depending upon which angle is used to define the direction.
- The angle used to define the direction is almost always between 0° and 90°.

Unit Vectors

- Each vector in the figure to the right has a magnitude of 1, no units, and is parallel to a coordinate axis.
- A vector with these properties is called a unit vector.
- These unit vectors have the special symbols:
 \[\hat{i} = (1, \text{positive } x\text{-direction}) \]
 \[\hat{j} = (1, \text{positive } y\text{-direction}) \]
- Unit vectors establish the directions of the positive axes of the coordinate system.

Components of a Vector (using unit vector notation)

- The unit vectors have magnitude 1, no units, and point in the $+x$-direction and $+y$-direction.

\[\mathbf{A} = A_x \hat{i} + A_y \hat{j} \]
Vector Algebra

- When decomposing a vector, unit vectors provide a useful way to write component vectors:
 \[
 \vec{A}_x = A_x \hat{i} \\
 \vec{A}_y = A_y \hat{j}
 \]
- The full decomposition of the vector \(\vec{A} \) can then be written
 \[
 \vec{A} = \vec{A}_x + \vec{A}_y = A_x \hat{i} + A_y \hat{j}
 \]

Working With Vectors

- We can perform vector addition by adding the \(x \)- and \(y \)-components separately.
- This method is called **algebraic addition**.
- For example, if \(\vec{D} = \vec{A} + \vec{B} + \vec{C} \), then
 \[
 D_x = A_x + B_x + C_x \\
 D_y = A_y + B_y + C_y
 \]
- Similarly, to find \(\vec{R} = \vec{P} - \vec{Q} \) we would compute
 \[
 R_x = P_x - Q_x \\
 R_y = P_y - Q_y
 \]
- To find \(\vec{T} = c \vec{S} \), where \(c \) is a scalar, we would compute
 \[
 T_x = cS_x \\
 T_y = cS_y
 \]
• For some problems it is convenient to tilt the axes of the coordinate system.
• The axes are still perpendicular to each other, but there is no requirement that the x-axis has to be horizontal.
• Tilted axes are useful if you need to determine component vectors “parallel to” and “perpendicular to” an arbitrary line or surface.
Important Concepts

A vector is a quantity described by both a magnitude and a direction.

- **Direction**
- The vector describes the situation at the point.
- The length or magnitude is denoted by a magnitude.

Important Concepts

Unit Vectors

Unit vectors have magnitude 1 and no units. Unit vectors \(\mathbf{i} \) and \(\mathbf{j} \) define the directions of the \(x \)- and \(y \)-axes.

Using Vectors

Components

- The component vectors are parallel to the \(x \) and \(y \) axes:
 - \(\mathbf{x} = x_i + x_j \)
 - \(\mathbf{y} = y_j \)

- In the figure, the right, for example:
 - \(x_i = 3 \) north
 - \(y_j = 4 \) west
 - \(\mathbf{A} = 3 \mathbf{i} + 4 \mathbf{j} \)
 - **Minor signs need to be included if the vector points down or left.**

Using Vectors

Working Graphically

- Addition:
 - \(\mathbf{A} + \mathbf{B} \)
- Negative:
 - \(-\mathbf{A} \)
- Subtraction:
 - \(\mathbf{A} - \mathbf{B} \)
- Multiplication:
 - \(\mathbf{A} \times \mathbf{B} \)
Using Vectors

Working Algebraically

Vector calculations are done component by component: \(\vec{C} = \vec{A} + \vec{B} \) means:
\[
\begin{align*}
C_x &= A_x + B_x \\
C_y &= A_y + B_y
\end{align*}
\]

The magnitude of \(\vec{C} \) is then \(C = \sqrt{C_x^2 + C_y^2} \) and its direction is found using \(\tan^{-1} \).